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Abstract — This study explores the concept of high-density 

anomalies. As opposed to the traditional concept of anomalies as 

isolated occurrences, high-density anomalies are deviant cases 

positioned in the most normal regions of the data space. Such 

anomalies are relevant for various practical use cases, such as 

misbehavior detection and data quality analysis. Effective methods 

for identifying them are particularly important when analyzing 

very large or noisy sets, for which traditional anomaly detection 

algorithms will return many false positives. In order to be able to 

identify high-density anomalies, this study introduces several non-

parametric algorithmic frameworks for unsupervised detection. 

These frameworks are able to leverage existing underlying anomaly 

detection algorithms and offer different solutions for the balancing 

problem inherent in this detection task. The frameworks are 

evaluated with both synthetic and real-world datasets, and are 

compared with existing baseline algorithms for detecting 

traditional anomalies. The Iterative Partial Push (IPP) framework 

proves to yield the best detection results.  

Keywords — High-density anomalies; Iterative partial push; 

Harmonic mean HDA detection; Anomaly detection; Noise filtering; 

misbehavior detection  

I. INTRODUCTION 

Academia and practice are dependent on increasingly larger 
collections of data. These collections are mined to obtain 
valuable insights, for example by creating descriptive overviews, 
training predictive models, and detecting clusters, associations 
and anomalies [1, 2, 3]. Anomaly detection (AD) is the task of 
analyzing the data to detect unusual occurrences. An anomaly is a 
case, or a group of cases, that is in some way different from the 
rest and does not fit the general patterns in the dataset [4, 5, 6, 
38]. Such cases are often also referred to as outliers, deviants, 
novelties or discords. Anomaly detection can be used for a wide 
variety of purposes, such as fraud detection [1, 9, 11], security 
and process monitoring [9, 10], data quality analysis [17] and 
data preparation prior to statistical modelling [1, 5, 8].  

Cases are traditionally considered more anomalous if they 
deviate w.r.t. more attributes. AD algorithms therefore generally 
assign more extreme anomaly scores to cases that have larger 
numbers of deviating attribute values [12]. However, it has been 
acknowledged that anomalies can be deviant with regard to a 
single attribute or a certain subspace (i.e. a subset of attributes), 
while exhibiting normal behavior w.r.t. the other attributes [1, 13, 
14]. This is relevant for practice, because there is significant 
value in identifying the cases that are not the most anomalous on 
all accounts, but that exhibit both normal and abnormal cha-
racteristics. Detecting such cases is particularly relevant for 
unmasking misbehavior. People or organizations attempting to 
commit fraud will try to keep their actions as close as possible to 
normal, legitimate actions [3, 10, 15]. For this reason tax returns 
with many deviant values are often considered to be less risky 
than cases with only one or two unusual attribute values [12]. In a 
similar vein, unusual banking transactions that exhibit many 

normal properties, such as common sums of money, may point to 
fraudulent behavior [11]. In data quality analysis it is also 
relevant to detect cases that are both normal and abnormal, i.e. 
are anomalous and yet located in the normal (i.e. high-density) 
regions of the data. This may typically inspire the imple-
mentation of strict quality verification rules or structural software 
improvements [16, 17].  

This study therefore explores the concept and detection of 
high-density anomalies (HDAs). These are occurrences that 
deviate from the norm but in some subspace are located in 
relatively high-density regions, i.e. are positioned amongst or are 
a member of the most normal cases. Semantically they can be 
interpreted as deviant occurrences that hide in normality. 
Contrary to traditional anomalies, which are typically con-
ceptualized as low-density (isolated) cases [18], high-density 
anomalies hide between the most normal data points. As such 
they are not detected by traditional AD algorithms or, if 
identified, get assigned a modest anomaly score. To the best of 
my knowledge the concept of high-density anomalies was 
introduced in [19], which showed that the method of dis-
cretization impacts the kinds of anomalies that are detected. No 
other published work seems to investigate the concept of HDAs 
or approaches to identify them, nor are datasets with explicitly 
labeled HDAs publicly available. This study therefore introduces 
and evaluates the IPP and HMDH approaches for detecting high-
density anomalies and compares their performance with existing 
non-HDA approaches. To explain and illustrate the concept of 
HDAs ample data plots are presented. In addition, datasets with 
labeled HDAs as well as R code have been published online. 

This paper proceeds as follows. Section II presents back-
ground theory and related research. Section III introduces the 
new approaches, which are evaluated in Section IV. Sections V 
and VI present the discussion and conclusion. 

II. THEORY 

For a proper understanding of the concept of HDAs it is 
valuable to first discuss the various types of anomalies that may 
reside in datasets. The typology of anomalies presented in [6, 38] 
offers a theoretical underpinning of the nature of different 
anomaly types and uses two main dimensions:  

 Types of Data: The data types of the attributes that are 
involved in the anomalous character of a deviant case. These 
can be quantitative (numerical, e.g. volume or length), 
qualitative (categorical, code- or class-based, e.g. gender or 
animal species) or mixed (when both types are involved).  

 Cardinality of Relationship: The way in which the various 
attributes relate to each other when exhibiting anomalous 
behavior. If no relationship between the attributes (variables) 
exists to which the anomalous character of the deviant case 
can be traced back, the relationship is said to be univariate 
and the analysis can assume independence between them. On 
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the other hand, if the deviant behavior of the anomaly lies in 
the relations between its variables, i.e. in the combination of 
its attribute values, then the relationship is said to be multi-
variate. This means the attributes need to be described and 
analyzed jointly, not separately, in order to account for the 
relationships between them.  

 

 

 
 
 

 

 

 

Fig. 1. Typology of anomalies [6, 38] (only the top six types are relevant here) 

These two dimensions yield six relevant types of anomalies. 
The focus in this study is on individual (atomic) data points in 
independent data, not on aggregates. The anomaly types are 
described below and illustrated in Fig. 2. (Note: some of this 
paper’s visuals can be best be viewed by zooming in on a screen; 
qualitative attributes are represented by colors and shapes).  

 Type I – Uncommon number anomaly: A case with an extre-
mely high, low or otherwise rare value for one or several 
individual quantitative attributes. Extreme value outliers are 
typically considered in traditional univariate statistics. The 
leftmost case in Fig. 2 is an example, being extreme on a 
single attribute, namely x1.  

 Type II - Uncommon class anomaly: A case with an 
uncommon class value for one or several individual quali-
tative variables. Such values can be few and far between (i.e. 
rare) or occur only once (i.e. truly unique). Fig. 2 contains 
three Type II anomalies with unique shapes.  

 Type III - Simple mixed data anomaly: A case that is both a 
Type I and Type II anomaly, i.e. with at least one extreme 
value and one rare class.  

 Type IV - Multidimensional numerical anomaly: A case that 
does not conform to the general patterns when the relation-
ship between quantitative attributes is taken into account, but 
that does not have extreme or isolated values for any of its 
individual attributes. Detection therefore requires several 
numerical attributes that are analyzed jointly. The example in 
Fig. 2 is multivariately isolated, with extreme individual 
values for neither x1 nor x2.  

 Type V - Multidimensional categorical anomaly: A case with 
a rare combination of class values. Two or more qualitative 
attributes thus need to be analyzed jointly to discover it. Both 
examples in Fig. 2 have a regular individual shape and color, 
but a unique combination thereof.  

 Type VI - Multidimensional mixed data anomaly: A case with 
a deviant relationship between its quantitative and qualitative 
attributes. The anomalous case generally has a categorical 
value or a combination of categorical values that in itself is 

not rare in the dataset as a whole, but is only rare in its 
numerical neighborhood. Type VI anomalies typically seem 
misplaced or mislabeled, as illustrated by the purple circle in 
Fig. 2 (which seems to belong to the purple cluster). 

A. High-Density Anomalies 

Not all the anomalies described and illustrated above are 
high-density anomalies. To assess whether a deviant occurrence 
is a HDA, it is necessary to acknowledge a third dimension for 
defining anomalies, the data distribution [38]. This dimension 
focuses on the dispersion of data points throughout the space. 
The bottom two Type II anomalies in Fig. 2 are HDAs because 
they are located in high-density regions. The Type II occurrence 
in the upper left quadrant, however, is a low-density anomaly as 
it lies in a sparse neighborhood. Likewise, the Type V anomaly in 
the upper right quadrant is a HDA, while the Type V case below 
it is a low (or moderate) density anomaly. Finally, a Type VI 
anomaly, per definition, lies in-cloud, i.e. amongst other cases. 
However, the Type VI occurrence in Fig. 2 can also be said to be 
positioned in a moderately (rather than highly) dense area. Note 
that the difference between ‘high-density’ and ‘low-density’ thus 
refers to a continuous rather than a binary property. 

Some anomaly types (I, III and IV) are necessarily isolated 
and will never be HDAs, some anomaly types may be isolated or 
positioned within a cluster (II and V), and other types are always 
positioned within a moderately or highly dense cluster (VI). 
However, the concept of high-density anomalies can be extended 
beyond what is discussed in this section (see the Discussion for 
more on this). 

B. Related Research 

Previous research has acknowledged cases that have both 
normal and abnormal characteristics. For example, a fringelier is 
an unusual data point, albeit one that occurs more often than 
seldom [20]. With its position of about three standard deviations 
from the majority of the numerical data, such a case can be 
considered a modest Type I anomaly. This is closely related to 
the in-disguise anomalies acknowledged in [21], which are 
defined as exhibiting only a minor deviation from the normal 
pattern. One may indeed be interested in subtle deviations, rather 
than in radically different occurrences [22].  

The concept of inliers is also relevant for the current study, 
although the term is used inconsistently in the literature. In [23] 
an inlier is defined as a case that lies in the interior of the 
distribution, but is in error nonetheless. An example is a tem-
perature value that is measured in degrees Celsius but reported in 
degrees Fahrenheit. It may be impossible to detect such 
occurrences without additional information, such as data from the 
previous year. The case then is thus normal in a subspace of the 
variables, but multivariately anomalous in the broader set (i.e. is 
of Type IV, V or VI). In [24] a very similar definition of an inlier 
is used, although without it necessarily being erroneous.  

The above refers to inliers as cases that are both normal and 
abnormal. However, note that other authors employ a different 
definition of inliers, namely simply as non-outliers [25, 26]. By 
definition, an inlier then refers to the vast majority of the cases 
that can simply be regarded as normal in all respects. Going one 
step further, the term inliers may be used for the roughly 60% of 
most normal and representative cases, which could be relevant if 
the aim is to obtain an estimate of population parameters using a 
smaller sample [27]. For the present study the definitions of [23, 
24, 27] are the most relevant, as these focus on cases that have 
both normal and abnormal characteristics, or on the cases 
positioned in the most dense regions.  
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The singular outlier is another related topic [12]. This refers 
to a case that exhibits a deviant value for only one or two 
attributes, while showing common behavior for all others. These 
outliers are typically Type I anomalies.  

To conclude, there are various conceptualizations that 
emphasize that anomalies may have both normal and abnormal 
characteristics. When all relevant data is available, these 
conceptualizations generally boil down to a classic anomaly type 
known from the literature, as described in Fig. 1. Few studies 
explicitly emphasize that some properties of the anomalous 
occurrences are normal and have their algorithms deal with that 
directly. Only the research of [7, 19] targets anomalies in the 
densest areas, which is also the topic of the current study.  

III. DETECTION APPROACHES 

This section describes various non-parametric algorithms and 
algorithmic frameworks for the unsupervised detection of (high-
density) anomalies.  

A. Existing baseline algorithms 

Existing general-purpose AD algorithms can be expected to 
identify HDAs, albeit with a considerable number of false 
positives due to purely isolated cases also being declared deviant. 
All these methods directly or indirectly yield some form or proxy 
of density assessment. They will be used as baseline algorithms 
against which the novel algorithmic frameworks can be 
compared, and may also be used as the underlying algorithms 
within these frameworks.  

Distance-based methods: These methods calculate the global 
distances between data points, with the cases having the largest 
distances to their nearest neighbors being the most anomalous 
[25, 31, 32]. These methods usually rely on numerical data, 
meaning the data must be pre-processed first (i.e. creating 
dummy variables and normalizing the data). This study uses 
KNN-AGG [31, 32] and the scalable, sampling based QSP 
algorithm [25].  

Local density-based methods: These methods not only target 
the global anomalies detected by distance-based methods, but 
also outliers that are only isolated in terms of their local 
neighborhood [33]. This may be relevant in sets with several 
clusters that have different densities. Such methods generally also 
require numerical data and consequently a pre-processing phase. 
This study uses LOF [33, 34].  

Global density-based methods: These methods focus on e.g. 
frequencies or kernel-density to detect global anomalies [cf. 30]. 
This study uses SECODA, which allows analysis of numerical 

and categorical data by employing iterative discretization of 
quantitative attributes [7, 17]. With its standard settings this 
algorithm performs equiwidth discretization, i.e. equal interval 
binning, which divides the range of an attribute’s continuous 
values into b bins of the same value interval. It also allows for 
equidepth discretization, i.e. equal frequency binning, which 
divides a continuous attribute into b bins that each contain the 
same number of cases. Research has shown that equidepth 
binning can directly target in-cloud and even high-density 
anomalies [ibid.]. The reason for this is that equidepth binning 
ignores numerically isolated cases, because the discretization 
intervals in sparsely populated areas get stretched so as to fill the 
bins with an equal amount of data points. Of these existing 
methods only SECODA with equidepth discretization can thus be 
expected to perform relatively well w.r.t. detecting HDAs.  

B. Proposed algorithmic frameworks 

This section presents algorithmic frameworks for HDA 
detection introduced by the current study. Algorithmic frame-
works leverage underlying general-purpose algorithms [cf. 28], 
such as those described above. The underlying algorithms yield 
scores on both anomalousness and neighborhood density, which 
then have to be optimally balanced. Let X represent an n×p 
matrix. Let xg,h represent the matrix value of the hth attribute for 
the gth row (case), with g = 1, 2, … n and h = 1, 2, … p. Let y 
represent a column vector with n rows unless it is a subset. The ⊕ 
symbol represents concatenation of different chunks and/or types 
of data. The function AnomalyDetectionAlgorithm() represents 
executing an underlying AD method such as LOF. Finally, the    
# green remarks provide explaining comments within the 
pseudocode. See the Remarks section for downloading the 
complete implementations in R. 

The frameworks – IPP and HMDH – assume that the under-
lying algorithms analyze the joint distribution, i.e. take into 
account the multivariate relationships, and that the lowest scores 
they return represent the most anomalous cases. 

Iterative Partial Push (IPP): The key idea behind the IPP 
framework is to iteratively filter (‘push’) out the isolated cases 
from the entire set of anomalies. The pseudocode is presented 
below. The algorithm starts by running the underlying AD 
algorithm, e.g. KNN-AGG, using all attributes (yielding vector 
aas) and a second run on only the numerical attributes (yielding 
ads). The density assessment will be based on these numerical 
attributes (‘dentributes’) used for ads. A series of iterations will 
then filter out the isolated cases identified in ads from aas. The 
QD (QuantileDenominator) setting determines the number of 
iterations and the granularity of each filter run. In the first itera-
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Fig. 2. Illustration of various anomaly types using two numerical (x1 and x2) and two categorical (represented as color and shape) attributes. 



Algorithm:  Iterative Partial Push  

Input data:  D, the original matrix with n cases and p attributes 
Input parameters:  QFB = -9999 # QuantileFilterBoost 
         QD = 100 # QuantileDenominator 

Output:  hds, a vector of high-density anomaly scores for all cases in D, with hdsg   
representing the individual score 

Key local variables:  i, the current iteration. 
aas, vector with general anomaly scores (for all anomaly types) 
ads, vector with density scores (based on continuous attributes)  
qp, the quantile proportion, with 0 < qp ≤ 1 

begin  

i  ← 0; continue ← TRUE  # Set initial values 
aas  ←  AnomalyDetectionAlgorithm(D)   # AD on full dataset 
ads  ←  AnomalyDetectionAlgorithm(Dc)  # AD on continuous attributes 

if QFB = -9999  # If not specified, then calculate QuantileFilterBoost 

QFB ← CalculateQFB(Dc) 
end if 
while continue = TRUE do 

i  ← i + 1 
qp ← i / QD  # Determine quantile proportion 
aasIDs  ←  set of the aas IDs with each case such that  

its aasg < the qp quantile value  # Identify this iteration’s most extreme anomalies 
qp ←  min( (QD – 1) / QD, (( i + QD / 100 · QFB ) / QD )  # Determine quantile 

proportion for numerical analysis 
adsIDs  ←  set of the ads IDs with each case such that  

its adsg < the qp quantile value  # Identify this iteration’s most extreme anomalies  
w.r.t. numerical (continuous) variables 

hdsIDs  ←  aasIDs ∆ adsIDs  # Discard isolated cases by determining the symmetric 

difference of aasIDs and adsIDs 
nullIDs  ←  IDs of cases in hds that still have a NULL value 

g  ←  hdsIDs ∩ nullIDs  # Intersect to identify cases to update 
sort g ascending on attribute aas and descending on attribute ads  
for each gg ∈ hds do   # Update empty hds scores of cases identified in g 

hdsg  ←  i ⊕ “.”⊕ the row number of gg  # Use sorted g to set decimals  
end for 
if i ≥ QD 

continue ← FALSE  # All iterations have been run 

end if 
end while 
if hdsg = Null  # Check if missing scores exist (as the isolated cases are filtered away) 

hdsg  ← 1 + max(ads) - adsg + QD  # Set high score for isolated case 

end if 
return  hds  # Return full anomaly score vector as the end result 

end 

tion the first quantile of aas (which contains aas’ most extreme 
general anomalies) is cleaned up, by filtering away from it the 
extremely isolated cases that populate the first quantile of ads. In 
the second iteration this is performed for the second quantile, and 
so on. The QFB (QuantileFilterBoost) is used to broaden each 
iteration’s numerical quantile proportion, so that the optimal 
fraction of isolated cases is filtered out. The QFB represents the 
degree of dispersion in the data distribution (relative to what can 
be expected by chance) and acts as the noise filter level. If the 
degree of dispersion is low (i.e. the degree of clustering is high), 
then the QFB will be low and only few additional cases are 
filtered away. However, if not much high-density clustering 
exists then many cases are scattered and the set is thus ‘noisy’, 
meaning more low-density cases need to be filtered out to avoid 
false positives. The QFB can be manually set or determined 
automatically, the latter of which uses the intrinsic density and 
optimal arity assessment of SECODA (albeit a simpler dis-
cretization process could also be run, e.g. with a fixed number of 
bins). The pseudocode is shown at the top right of this page.  

As a final step in each iteration the score for the selected 
cases is determined. This is done by concatenating the iteration i, 
a decimal point, and the extremity of each case in the current 
iteration (determined after sorting the cases ascending on aas and 
descending on ads). For example, the score of a case that in the 
third iteration’s subset of 19 cases is the second most extreme 
will get assigned a score of 3.02. After the last iteration, IPP 
returns a vector of gradual anomaly scores, with lower values 
representing more extreme HDAs. The pseudocode of IPP is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Harmonic Mean Detection of HDAs (HMDH): The HMDH 
framework starts in a similar way as IPP, except it takes 
WeightCorrection as its single input parameter (QFB and QD are 
not relevant here). As in IPP, aas and ads are calculated using an 
underlying AD algorithm. Subsequently the vectors are reversed 
and rescaled, so that it can be expected that the most extreme 
HDAs will have a high score for both their aasg and adsg. As a 
next step the optimal balance between these two vectors 

(representing individual anomalousness and density of the 
neighborhood) is determined. This is done by calculating for each 
case the harmonic mean between these two values, so as to obtain 
the individual HDA scores. The intuition behind this is that it will 
find an optimally balanced HDA score: a case having a high 
score for both aasg (i.e. it is anomalous) and adsg (i.e. it is located 
in a high-density area) will end up having a high HDA score. The 
harmonic mean ensures a low score if either of these values is 
low, so only HDAs will get assigned a high score. As a final step 
the HDA score vector is reversed so that, similar to IPP, the 
lowest scores represent the most anomalous occurrences.  

The WeightCorrection offers three ways of calculating the 
harmonic mean. Option None simply calculates for each case an 
unweighted mean of aasg and adsg. However, early experiments 
showed that if some classes (or combinations thereof in case of 
multiple categorical attributes) are unevenly distributed in the 
space while others are densely packed, the ads scores tend to 
have too much influence on the HDA scores. Option SSE 
therefore calculates the relative Shannon information entropy of 
the (combinations of the) classes, resulting in a value between 0 
and 1 that is used as the weight for ads (with aas having a weight 
of 1). Option SDEN first uses the aas density score to calculate 
the arithmetic mean of the density per class (or class combina-
tion). Subsequently, the fraction of the highest average density 
and the harmonic mean of the remaining average densities yields 
a value between 0 and 1 that, similar to SSE, is used as the 
weight for ads.  

IV. EVALUATION 

This section presents the evaluation of the various frame-
works and algorithms using the ROC/PRC AUC [35, 36, 37] and 
confusion matrix based metrics [1, 39]. Table I shows the charac-
teristics of the datasets used. Synthetic sets had to be created for 
the current research, since no publicly available datasets could be 
found with explicitly labeled high-density anomalies. Anomalies 
were manually injected in such a way that they represent clear-
cut HDAs. The Polis set is a real-world income dataset [17] 
without ground-truth and thus used here for an exploratory analy-
sis. It contains 3 numerical attributes and 1 categorical attribute.  

All experiments were conducted in R 3.6.1, RStudio 1.2.5001 
and packages pROC 1.15.3, precrec 0.10.1, fmsb 0.6.3, dbscan 
1.1-5, SECODA 0.5.4, DDoutlier 0.1.0 and spoutlier 1.0. Algo-
rithms were generally executed with their standard settings. 
However, spoutlier’s QSP was run using 3000 samples (instead 

Algorithm:  CalculateQFB  # Calculate QuantileFilterBoost 

Input data:  ads ; Dc, the original matrix with n cases and p continuous (numerical) attributes 

Output:  QFB, the degree of dispersion (noise or clustering) in the distribution 

begin 
 p  ←  the number of continuous variables in Dc 

UltimateArity  ←  number of SECODA iterations required to determine ads 
 

ExpectedRandomDensity  ←  
𝑛

𝑈𝑙𝑡𝑖𝑚𝑎𝑡𝑒𝐴𝑟𝑖𝑡𝑦 𝑝     
 

QFB  ←   2 ∙  
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝑎𝑛𝑑𝑜𝑚𝐷𝑒𝑛𝑠𝑖𝑡𝑦

1

𝑛
 𝑎𝑑𝑠 𝑖
𝑛
𝑖=1

 ∙ 100 

return  QFB  

end 

 

UltimateArity 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑅𝑎𝑛𝑑𝑜𝑚𝐷𝑒𝑛𝑠𝑖𝑡𝑦

1
𝑛
 𝑎𝑑𝑠𝑖
𝑛
𝑖=1

 
1

𝑛
 𝑎𝑑𝑠𝑖

𝑛

𝑖=1

 



Dataset Nature Data types # Cases # HDAs Anomaly types (HDAs) 

Gleuf Simulated 3 num, 1 categ 25853 6 VI 

NoisyHelix Simulated 3 num, 1 categ 9665 15 VI 

Multiset4D Simulated 3 num, 1 categ 7853 22 VI 

Multiset5D Simulated 3 num, 2 categ 70767 40 II, V, VI 

Polis dataset Real-world 3 num, 1 categ 304726 Unknown (no explicit labels) 

 

of the standard 20) for more stable results, and SECODA was run 
without pruning to obtain the most precise scores. Unless stated 
otherwise, HMDH uses SECODA as its underlying algorithm.  

 

TABLE I.  OVERVIEW OF USED DATASETS 

 

 

 

 

 

NoisyHelix, Multiset4D and Multiset5D contain too many 
HDAs to be understandably plotted and discussed, necessitating 
the use of evaluation metrics to obtain a clear insight into the 
functional performance of the algorithms. Some idiosyncrasies of 
anomaly detection should be taken into account here. As a result 
of the extremely imbalanced class distribution (i.e. few anoma-
lies, many normal cases), evaluation metrics such as ROC/PRC 
AUC, accuracy and specificity are often intrinsically high. 
Consequently, when studying these metrics it is important to also 
take the numbers to the right of the decimal point into account. 
Moreover, for AD it is crucial to analyze the early retrieval 
results, i.e. the validity of the most extreme anomaly scores [36], 
because these cases are typically classified as the anomalies that 
demand further action. The early retrieval performance is 
especially relevant in this study because the difference between 
regular AD algorithms and HDA frameworks are compared, both 
of which can be expected to detect HDAs – the main difference 
being the amount of false positives. The important early retrieval 
metrics are those that are not intrinsically high, e.g. F1, 
sensitivity and precision. The partial (left) area of the ROC curve 
is also relevant in this context, as this focuses on the most 
extreme scores and helps to analyze false positives [35, 37].  

Gleuf: This set is shown in Fig. 3 and contains 6 high-density 
anomalies of Type VI (2 blue cases in the red cluster and 4 red 
cases in the blue cluster) as well as a large number of isolated 
cases that in the context of this study represent uninteresting 
noise. The IPP framework (regardless of it using KNN-AGG or 
SECODA) detects all 6 anomalies amongst its top 6 results (i.e. 
the 6 cases with the most extreme anomaly scores). The HMDH 
(SDEN) framework also performs well w.r.t. its early retrieval 
results, by detecting 3 true HDAs amongst its top 6 results and 5 
amongst its top 10. However, regular (equiwidth) SECODA, 
which also targets isolated cases, does not detect any HDAs 
amongst its top 40 results, and detects only 1 HDA amongst the 
top 100 results. KNN-AGG detects 1 HDA amongst its top 40 
results and 2 amongst its top 100 results. This relatively poor 
performance is the result of the many isolated noise cases present 
in the set, which are declared anomalous by regular AD 
algorithms such as KNN-AGG, QSP and SECODA, but not 
deemed relevant in the context of this study. Equidepth SECODA 
performs similar to HMDH SDEN, except the 6th HDA gets 
assigned an extremely non-anomalous score.  

The impact of the presence of noise on detection performance 
is clearly illustrated in Fig. 3. For visualization purposes this plot 
discards one numerical dimension. The left sub-figure highlights 
all 6 true HDAs in light blue, which are correctly identified by 
IPP as the top 6 anomalies. The right sub-figure highlights the 
top 10 anomalies as returned by traditional AD approaches that 
view isolated case as anomalies (KNN-AGG and SECODA 
returned identical results here).  

 

Fig. 3. Gleuf set (6 HDAs at the left and 10 noise cases at the right) 

When the numerical x2 attribute is discarded from the 
analysis (as in Fig. 3), the first HDA is at the 11th position in 
terms of anomaly scores returned by regular SECODA. When all 
three numerical attributes are included in the analysis – and data 
points thus get scattered more – this effect is significantly more 
extreme, with the first HDA being positioned at the 41th position 
for SECODA. This clearly illustrates that a classic density or 
distance-based AD approach identifies the many isolated noise 
cases as anomalies and will thus not include the HDAs amongst 
the early retrieval results. It tangibly demonstrates why regular 
low-density or distance-oriented AD is not suited for detecting 
HDAs, especially when dealing with noisy or large datasets. 
Moreover, the effect is exacerbated if more attributes are added, 
as cases get dispersed more with increasing dimensionality.  

NoisyHelix: This set features a helix pattern, a substantial 
amount of noise and HDAs in the ‘wrong’ cluster. Fig. 4 and 5 
show a plot and the ROC curves respectively. Table A in the 
Appendix presents the (partial) ROC/PRC AUC values. Table B 
shows the early retrieval performance using various confusion 
matrix based metrics, which require a threshold on the scores to 
declare cases either normal or anomalous. Two thresholds are 
used, namely a cut-point based on the number of true HDAs and 
one on Youden’s best ROC threshold [29]. Used metrics are 
sensitivity, specificity, precision, accuracy, F1 (harmonic mean 
of precision and sensitivity), Matthews correlation coefficient, 
Cohen’s Kappa, GMRP (geometric mean of recall and precision) 
and HMFM (harmonic mean of four metrics, i.e. sensitivity, 
specificity, precision and accuracy) [35, 36, 37, 39].  

 

Fig. 4. Plot of NoisyHelix with HDAs (shown as large data points), seemingly 

located in a cluster of the wrong class (shown as color) 
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Fig. 5. ROC curves of NoisyHelix analysis 

The AUC values indicate that the IPP and HMDH frame-
works demonstrate the best overall performance, regardless of the 
underlying AD algorithm (except for LOF). Regular distance- 
and density-oriented AD performs relatively poorly, while 
equidepth SECODA yields medium performance. A more 
tangible insight is offered by the early retrieval results in 
Appendix Table B. These results also clearly illustrate that 
regular distance- and density-based algorithms perform poorly, 
with low values for all relevant metrics (note that those with high 
values will always be high in this context due to the way they are 

calculated). Table B shows the results for KNN-AGG and 
SECODA, but the other non-HDA algorithms demonstrated a 
similar poor performance. The precision, sensitivity (recall), F1 
and various other measures of KNN-AGG using the true number 
of HDAs are all 0, meaning amongst the 15 cases with the most 
extreme anomaly scores 0 true HDAs are present. The sensitivity 
of SECODA is approximately 0.0667, which means that of the 15 
true HDAs only 1 case is recognized as such. The precision of 
0.0625 points to a very high degree of false positives. 

For an analyst scrutinizing the most extreme scores, this 
means most of his or her time would be spent on the wrong cases. 
In this small dataset this could be overcome by simply spending 
more time, but in large sets with millions of data points the 
number of false positives would be so great as to make any 
manual analysis task practically infeasible. The HDA 
frameworks, which are designed specifically for this problem, 
perform very well in this regard. They exhibit high scores for all 
metrics, including those that are not naturally high in an AD 
context.  

Multiset4D: This set consists of various clusters of a different 
class (in Fig. 6 represented by color). Fig. 7 shows the ROC 
curves. The AUC values of Table E in the Appendix indicate that 
the IPP framework yields the best overall performance, regard-
less of the underlying AD algorithm (again with the exception of 
LOF). This is followed closely by a good performance of the 
HMDH SDEN framework. However, HMDH SSE and HMDH 
None perform poorly. Distance- and density-oriented AD also 
perform less well (note that AUCs are often intrinsically high in 
AD due to the imbalanced distribution). Equidepth SECODA 
performs slightly better than the standard equiwidth variant.  

Due to space limitations the confusion matrix based metrics 
could not be included in detail in the Appendix. However, the 
evaluations demonstrate similar results as for NoisyHelix and 
Multiset5D. Regular distance- and density-based algorithms 
perform poorly, with low values for all relevant metrics. To make 
tangible what this entails for KNN-AGG: of the 22 true HDAs 
only 2 are detected (yielding a sensitivity of 0.09). Of the 22 
most extreme anomaly scores only 2 cases are true HDAs, with 
no less than 20 cases being false positives (yielding a precision of 
0.09). In contrast, IPP with KNN-AGG obtained scores of 1, 
representing perfect results. 

Multiset5D: Fig. 8 shows this is a dataset with very strict 
patterns and low levels of variation and fully random noise. The 
results in Appendix Table C make clear this is a challenging set 
for the frameworks to analyze, with IPP again demonstrating the 
best functional performance. For this set IPP is the only HDA 
framework performing better than the baseline algorithms. The 
three HMDH approaches and equidepth SECODA all perform 
very poorly. Somewhat surprisingly, the HMDH SDEN 
approach, which performed very well for the other sets, fails here 
and performs worse than the classic distance- and density-based 
approaches.  

 The AUC scores of the HMDH SSE and weightless HMDH 
None approaches are both approximately 60%, meaning that the 
Shannon entropy does not provide much value in adjusting the 
weights for this set. The non-HDA algorithms perform relatively 
well in terms of AUCs, which can be attributed to the fact that 
the set does not contain many noise cases that mask the true 
HDAs. However, the results in Table D show that the early 
retrieval performance of these algorithms is still poor. Although 
it performs better than regular LOF, IPP LOF performs relatively 
poor when compared to the other IPP instantiations.  

As an anecdote, the IPP framework also proved its value by 
discovering two errors in this dataset. During the preparation 
phase these cases were erroneously labeled by the author as 
HDAs, but in reality were isolated cases. When IPP seemingly 
could not detect these ‘HDAs’, closer inspection revealed that 
these data points were in fact isolated and had faulty labels, after 
which this could be corrected. 
 

 

Fig. 6. Various Multiset4D clusters containing high-density Type VI anomalies 

(shown as large data points correctly detected by IPP with KNN-AGG) that 
are of a class (color) from a different cluster 
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Fig. 7. ROC curves of Multiset4D analysis 

Polis dataset: This is a real-world income dataset with 1 
social security code (qualitative), 1 wage and 2 social charge (all 
quantitative) attributes. The set demonstrates strong patterns 
based on governmental laws and regulations. No ground-truth is 
available, but the exploratory analysis clearly demonstrates the 
differences between the traditional AD detection and HDA 
detection frameworks. Fig. 9 shows the plots of regular and IPP 
anomaly detection (the bottom part zooms in on the high-density 
cloud in the center). The left plot illustrates the detection results 
of regular SECODA, which, as can be seen, detects mainly 
isolated cases. The right plot shows the detection results of IPP 
with SECODA, which mainly detects anomalies within the high-
density center. A similar effect can be seen when conducting this 
analysis with e.g. KNN-AGG or QSP. The different versions of 
the HMDH framework yield meaningful results as well, albeit 
somewhat less diverse than IPP (i.e. many anomalies identified 
by HMDH are positioned relatively close to each other).  

Summarizing the results, the IPP framework consistently 
outperforms the other approaches. The HMDH framework 
performed well on most sets, with the SDEN weight adjustment 
method consistently performing best across the HMDH versions. 
However, HMDH performed poorly on Multiset5D because none 
of the weight adjustment methods worked properly for this set. 
The traditional, general-purpose AD algorithms were often also 
able to identify the HDAs. However, in large sets they tend to 
yield too many false positives to be effectively used, as is de-
monstrated by the early retrieval results that then predominantly 
contain isolated cases. Of these non-HDA algorithms, distance 
and global density based approaches perform relatively well 
(albeit never as good as when used within IPP), while the LOF 
algorithm did not deliver good results. Finally, SECODA with 
equidepth discretization performed better than equiwidth 
discretization in most situations, but demonstrated inconsistent 
performance across datasets and despite good early retrieval 
results sometimes had difficulty in detecting the last, more 
nuanced HDA cases.  

Note that some of the results can be improved further. QSP 
and SECODA are optimized for scalability at the cost of 
precision. Increasing the number of samples for QSP and the 
number of iterations for SECODA makes the  results more pre- 

 

Fig. 8. Plot of Multiset5D with anomalies shown as large symbols (with the 

color and symbols denoting the different qualitative classes) 

cise, bringing their performance closer to that of KNN-AGG. 
This holds both for their use as independent algorithms and 
within the IPP and HMDH frameworks. If the underlying 
analysis results get more precise, the results of a framework that 
leverages them will also get more precise. 

V. DISCUSSION 

High-density anomalies have an understandable and 
meaningful interpretation: they represent deviant occurrences that 
hide in normality. In some respects they are anomalous, in other 
respects they belong to the most normal of cases. As such, a 
HDA can be seen as an occurrence that tries to mask its deviating 
nature by exhibiting the most normal behavior possible for that 
situation. HDAs are unusual cases that nonetheless may easily go 
unnoticed because they ‘hide in numbers’, namely in high-
density areas. Contrary to traditional anomalies, which are 
typically conceived as isolated, low-density occurrences, HDAs 
are positioned amongst the most normal data points.  

Note that “most normal” and “high-density” are somewhat 
relative concepts. In a given dataset the highest density regions 
may contain no HDAs at all as these may all be positioned in 
areas that are only moderately dense. Also, a moderately dense 
neighborhood may contain an extreme anomaly (e.g. a unique 
class) and a highly dense region a modest anomaly (e.g. a rare 
class). The HDA detection task is in essence a trade-off and 
balancing problem between case anomalousness and neigh-
borhood density, with the most normal (high-density) regions not 
necessarily hosting HDAs. The IPP and HMDH frameworks each 
have their own way of managing this balancing task, with the 
QuantileFilterBoost and weight adjustments respectively playing 
important roles. 

As discussed in the Introduction, HDA detection can typically 
be valuable for misbehavior detection and data quality use cases, 
where the focal deviants are likely to also demonstrate very 
normal behavior. In addition, identification of HDAs may be 
useful when the dataset contains a high degree of noise that one 
is not interested in – as clearly illustrated by the Gleuf example 
of Fig. 3. Existing algorithms for anomaly detection, such as 
distance- and density-based approaches, will generally declare 
the isolated cases anomalous. However, these may thus represent 
uninteresting statistical noise or simple extreme cases in which 
one takes no interest. Especially in analyses of large datasets it 

 
* * 

* 

* 

* 

* 
QSP (KNN-AGG is very similar) 

LOF 

Equidepth SECODA 

Equiwidth SECODA 

HMDH SSE 

HMDH none (weightless) 

IPP QSP and IPP KN-AGG (SECODA and  
    HMDH SDEN are almost  identical) 

 



will be necessary to then actively avoid wasting time on these 
noise cases. For example, governmental data registers, such as 
the Polis administration, often include the whole population and 
can therefore be expected to contain considerable statistical 
variation, even though many of the isolated cases will probably 
not be erroneous. HDA detection can help to focus on deviations 
amongst the most normal cases and to avoid spending valuable 
time on these univariately or multivariately isolated Type I, III 
and IV outliers. Without such methods it will otherwise be very 
difficult to detect high-density anomalies in large databases, 
because the noisy data points will mask the true HDAs. The focal 
analysis results (i.e. the early retrieval results that one will 
typically study in detail) will consequently contain a large 
number of false positives and miss true HDAs. In such situations 
an approach directly targeting HDAs is a downright necessity in 
order to conduct an effective and efficient analysis. 

 

 

Fig. 9. Real-life Polis income dataset. Large data points represent the top 40 

anomalies as detected by SECODA (left) and IPP SECODA (right). 

Anomalies detected by IPP are positioned in the high-density area.  

Having said this, an interesting property of the IPP algorithm 
is that it still returns the isolated cases. The HDAs get assigned 
the lowest scores and can thus easily be identified by the analyst. 
However, the algorithm operates in such a way that the cases 
with the highest scores prove to be the isolated cases. The last 
statements of the pseudocode, just before returning hds, add the 
filtered-out isolated cases to hds with high values. Both the low 
and high ends of the score vector thus contain anomalies.  

LOF did not perform very well in the context of HDA 
analysis, neither as a stand-alone technique nor as an underlying 
algorithm of a HDA framework. Many HDAs are not assigned 
proper anomaly scores by LOF and only get declared anomalous 
using a high threshold, resulting in a relatively large number of 
false positives. An important reason for this is that LOF does not 
yield a global outlier assessment for the individual cases 
(yielding a suboptimal aas). This is due to its local orientation, in 
which an individual data point that is positioned close to a given 
cluster may still get assigned a score that implies it is isolated 
(which it only is from a local perspective). Perhaps this may be 
relevant to some HDA situations, but the HDAs in this study’s 
datasets are mainly anomalous from the perspective of the global 
numerical space. Because of its local focus LOF also does not 
effectively detect globally isolated noise cases (yielding a 
suboptimal ads), which means these cannot be filtered away 

effectively. For example, many of the noise cases scattered 
throughout the space of the NoisyHelix set are not acknowledged 
as outliers and therefore cannot effectively be removed. In short, 
a HDA framework works well if its underlying algorithm suits 
the set and the problem at hand, because both aas and ads need 
to be correct.  

In this study all the dataset’s numerical attributes are used to 
determine the neighborhood density, whereas the full set of 
attributes (including the categorical ones) are used to verify 
whether the case is anomalous. This analysis can be done 
unsupervised and without manually setting any input parameters, 
which is a favorable characteristic for a data mining method [22]. 
However, conceptually there is no reason why the neighborhood 
density needs to be assessed only in the numerical space, or why 
all attributes should be involved in assessing anomalousness. The 
definition of a high-density neighborhood could therefore be 
extended to take only a subset of the numerical variables into 
account and even to include categorical attributes. Likewise, the 
assessment of how anomalous a case is can be based on a flexible 
subspace. Note, however, that this requires explicit input from 
and domain knowledge of the data analyst, because the 
dentributes (density attributes) in such a scenario are not 
necessarily numerical and thus can no longer be automatically 
determined. Extended versions of the algorithmic frameworks 
then thus require the user to explicitly parameterize which attri-
butes should be used for the high-density assessment (normalness 
of the neighborhood) and which ones should be used for the low-
density assessment (anomalousness of the individual cases). 

Finally, from a technical point of view the IPP framework 
allows being executed in a distributed fashion. For instance, 
given the standard value for the QuantileDenominator setting the 
algorithm will perform 100 iterations. These can largely be done 
independently, e.g. on 100 machines.  

VI. CONCLUSION 

As a first contribution, this study has explored a novel 
perspective on anomalies, which differs from the traditional view 
of anomalies as isolated, low-density data points. A HDA is an 
anomaly in a highly normal neighborhood, the detection of which 
requires an approach to balance the degree of deviation and 
neighborhood density. The concept of HDAs is not only new 
from a theoretical perspective, but also relevant for practical use 
cases. A second contribution of this research is the introduction 
of two algorithmic frameworks (IPP and HMDH) and several 
variations thereof, which are designed to identify HDAs. A third 
contribution is the evaluation of these frameworks and of several 
existing algorithms used as a baseline. A final contribution is the 
creation of four publicly available simulated sets that can be used 
for future research (see Remarks for hyperlink).  

There are several topics for future research. Firstly, the 
HMDH framework can be improved. The experiments demon-
strate they offer good detection performance on various sets. 
However, the performance is unreliable, and alternative or 
improved methods for determining the weights should be studied.  

Secondly, experiments with the IPP and HMDH frameworks 
can be conducted on high-dimensional datasets and in com-
bination with additional general-purpose AD algorithms, both as 
underlying algorithms for the frameworks and as baseline 
algorithms for comparison of results.  

A third topic for future research is setting a proper threshold 
on the gradual scores to explicitly declare cases a high-density 
anomaly This is especially important in this context. The 
experiments show that if the HDA algorithm works properly, the 

     



cases with the most extreme scores are indeed all HDAs. 
However, at some position in the resulting score vector all true 
HDAs will have been declared anomalous and the less extreme 
scores will be false positives if the threshold is set too high. 
Obviously, threshold setting is an issue for any algorithm 
returning a continuous anomaly score vector, but the problem is 
more prevalent in the HDA setting. With regular distance- or 
density-based algorithms the cases with less extreme scores will 
be increasingly normal and less isolated – indeed as a true 
continuous phenomenon. However, with HDA analysis false 
positives will suddenly manifest themselves and perfectly normal 
cases will be declared anomalous. Future research should 
therefore aim to find approaches to set a proper threshold.  

Another topic to study is the way how aggregate anomalies 
(groups or collectives) can manifest themselves as HDAs. These 
aggregates, represented in the bottom row of Fig. 2 and discussed 
in [38], have been ignored in this research. A final topic for 
future research concerns extending the frameworks with 
manually setting the subspaces as discussed in Section V.  
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APPENDIX 

 

The following tables provide additional details and reproducibility information. 
 

 

 

 

 

 
Table A. AUC values for NoisyHelix analysis. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table B. Early retrieval results for NoisyHelix analysis.  
 

 

 

 

 

 

 
Table C. AUC values for Multiset5D analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table D. Early retrieval results for Multiset5D analysis. 

 

 

 

 

 

 
Table E. AUC values for Multiset4D analysis. 

 Algorithm 

HMDH SDEN HMDH SSE HMDH None IPP SECODA SECODA SECODA ED IPP QSP QSP IPP KNN-AGG KNN-AGG IPP LOF LOF 

ROC AUC 88.8580387% 61.6405687% 58.2851316% 99.9977731% 99.9044212% 89.7699782% 99.9279271% 99.8278239% 99.9999293% 99.9203982% 99.1906556% 98.4309740% 

ROC partial AUC for 
100-90% specificity 

75.5825215% NA NA 99.9882796% 99.4969538% 91.7825806% 99.6206689% 99.0938099% 99.9996279% 99.5810429% 97.3215395% 97.0495523% 

PRC AUC 99.9923298% 99.9706685% 99.9679945% 99.9999987% 99.9999459% 99.9902886% 99.9999591% 99.9999024% 99.9999999% 99.9999550% 99.9994997% 99.9989423% 

 

 IPP SECODA 

Threshold based 
on # of true HDAs 

Threshold based on 
best Youden ROC 

M
e

tr
ic

 

Sensitivity/Recall 0.95 1 

Specificity 0.999971722 0.999208223 

Precision/PPV  0.95 0.416666667 

Accuracy 0.999943476 0.999208671 

F1 measure 0.95 0.588235294 

Matthews CC 0.949971722 0.645241629 

Cohen’s Kappa 0.949971722 0.587906452 

GMRP 0.95 0.645497224 

HMFM 0.974338847 0.740523471 

 
 SECODA 

Threshold based 
on # of true HDAs 

Threshold based on 
best Youden ROC 

M
e

tr
ic

 

Sensitivity/Recall 0.2 1 

Specificity 0.999547556 0.993156786 

Precision/PPV  0.2 0.076335878 

Accuracy 0.999095624 0.993160654 

F1 measure 0.2 0.141843972 

Matthews CC 0.349632239 0.085550525 

Cohen’s Kappa 0.349632239 0.014531431 

GMRP 0.2 0.276289482 

HMFM 0.333295620 0.248234790 

 

 SECODA ED 

Threshold based 
on # of true HDAs 

Threshold based on 
best Youden ROC 

M
e

tr
ic

 

Sensitivity/Recall 0.475 0.85 

Specificity 0.999703084 0.995093811 

Precision/PPV  0.475 0.089238845 

Accuracy 0.999406503 0.995011799 

F1 measure 0.475 0.161520190 

Matthews CC 0.474703084 0.274487079 

Cohen’s Kappa 0.474703084 0.160661494 

GMRP 0.475 0.275414267 

HMFM 0.643975423 0.277926458 

 

 HMDH SDEN 

Threshold based 
on # of true HDAs 

Threshold based on 
best Youden ROC 

M
e

tr
ic

 

Sensitivity/Recall 0.075 0.75 

Specificity 0.998727502 0.869088184 

Precision/PPV  0.032258065 0.003229626 

Accuracy 0.998205378 0.869020871 

F1 measure 0.045112782 0.006431558 

Matthews CC 0.048370527 0.043574336 

Cohen’s Kappa 0.044357366 0.005311913 

GMRP 0.049186938 0.049216053 

HMFM 0.086325212 0.012768619 

 
 KNN-AGG 

Threshold based 
on # of true HDAs 

Threshold based on 
best Youden ROC 

M
e

tr
ic

 

Sensitivity/Recall 0.25 1 

Specificity 0.999575834 0.997539836 

Precision/PPV  0.25 0.186915888 

Accuracy 0.999152147 0.997541227 

F1 measure 0.25 0.314960630 

Matthews CC 0.249575834 0.431805563 

Cohen’s Kappa 0.249575834 0.314307547 

GMRP 0.25 0.432337701 

HMFM 0.399949090 0.478759187 

 

 IPP KNN-AGG 

Threshold based 
on # of true HDAs 

Threshold based on 
best Youden ROC 

M
e

tr
ic

 

Sensitivity/Recall 0.975 1 

Specificity 0.999985861 0.999985861 

Precision/PPV  0.975 0.975609756 

Accuracy 0.999971738 0.999985869 

F1 measure 0.975 0.987654321 

Matthews CC 0.974985861 0.987722614 

Cohen’s Kappa 0.974985861 0.987647253 

GMRP 0.975 0.987729597 

HMFM 0.987331439 0.993781840 

 

 IPP SECODA, IPP KNN-AGG & HMDH SSE 

Threshold based 
on # of true HDAs 

Threshold based on 
best Youden ROC 

M
e

tr
ic

 

Sensitivity/Recall 1 1 

Specificity 1 1 

Precision/PPV  1 1 

Accuracy 1 1 

F1 measure 1 1 

Matthews CC 1 1 

Cohen’s Kappa 1 1 

GMRP 1 1 

HMFM 1 1 

 

 SECODA 

Threshold based 
on # of true HDAs 

Threshold based on 
best Youden ROC 

M
e

tr
ic

 

Sensitivity/Recall 0.066666667 1 

Specificity 0.998445596 0.934715026 

Precision/PPV  0.0625 0.023255814 

Accuracy 0.996999483 0.934816348 

F1 measure 0.064516129 0.045454545 

Matthews CC 0.063047944 0.147436626 

Cohen’s Kappa 0.063015027 0.042550180 

GMRP 0.064549722 0.152498570 

HMFM 0.121195351 0.086693476 

 

 SECODA ED 

Threshold based 
on # of true HDAs 

Threshold based on 
best Youden ROC 

M
e

tr
ic

 

Sensitivity/Recall 0.266666667 1 

Specificity 0.998860104 0.989015544 

Precision/PPV  0.266666667 0.123966942 

Accuracy 0.997723745 0.989032592 

F1 measure 0.266666667 0.220588235 

Matthews CC 0.265526770 0.350150300 

Cohen’s Kappa 0.265526770 0.218429826 

GMRP 0.266666667 0.352089395 

HMFM 0.420900990 0.360722313 

 

 HMDH SDEN 

Threshold based 
on # of true HDAs 

Threshold based on 
best Youden ROC 

M
e

tr
ic

 

Sensitivity/Recall 0.933333333 1 

Specificity 0.999896373 0.998756477 

Precision/PPV  0.933333333 0.555555556 

Accuracy 0.999793068 0.998758407 

F1 measure 0.933333333 0.714285714 

Matthews CC 0.933229706 0.744892415 

Cohen’s Kappa 0.933229706 0.713714455 

GMRP 0.933333333 0.745355992 

HMFM 0.965444857 0.832901577 

 

 HMDH None 

Threshold based 
on # of true HDAs 

Threshold based on 
best Youden ROC 

M
e

tr
ic

 

Sensitivity/Recall 0.933333333 1 

Specificity 0.999896373 0.999689119 

Precision/PPV  0.933333333 0.833333333 

Accuracy 0.999793068 0.999689602 

F1 measure 0.933333333 0.909090909 

Matthews CC 0.933229706 0.912729021 

Cohen’s Kappa 0.933229706 0.908936732 

GMRP 0.933333333 0.912870929 

HMFM 0.965444857 0.952240050 

 

 KNN-AGG 

Threshold based 
on # of true HDAs 

Threshold based on 
best Youden ROC 

M
e

tr
ic

 

Sensitivity/Recall 0 1 

Specificity 0.998445596 0.919170984 

Precision/PPV  0 0.018867925 

Accuracy 0.996896017 0.919296430 

F1 measure 0 0.037037037 

Matthews CC -0.001554404 0.131692250 

Cohen’s Kappa -0.001554404 0.034094403 

GMRP 0 0.137360564 

HMFM 0 0.071205133 

 

 Algorithm 

HMDH SDEN HMDH SSE HMDH None IPP SECODA SECODA SECODA ED IPP QSP QSP IPP KNN-AGG KNN-AGG IPP LOF LOF 

ROC AUC 99.9896373% 100% 99.9972366% 100% 99.1347150% 99.6777202% 99.9744387% 98.8307426% 100% 98.4960276% 82.0725389% 60.4069084% 

ROC partial AUC for 
100-90% specificity 

99.9454595% 100% 99.9854559% 100% 95.4458686% 98.3037906% 99.8654668% 93.8460140% 100% 92.0843560% 74.8095628% 69.2246159% 

PRC AUC 99.9999839% 100% 99.9999957% 100% 99.9986303% 99.9994983% 99.9999603% 99.9981542% 100% 99.9976034% 99.9589285% 99.8496390% 

 

 Algorithm 

HMDH SDEN HMDH SSE HMDH None IPP SECODA SECODA SECODA ED IPP QSP QSP IPP KNN-AGG KNN-AGG IPP LOF LOF 

ROC AUC 99.9965173% 80.6056349% 76.7027316% 99.9970978% 99.5217144% 99.5397082% 100% 99.5669890% 100% 99.5298406% 96.4035709% 96.6165937% 

ROC partial AUC for 
100-90% specificity 

99.9816702% 81.0237683% 70.0979850% 99.9847252% 97.4827074% 97.5774113% 100% 
 

97.7209948% 100% 97.5254769% 97.2318946% 91.6703275% 

PRC AUC 99.9999902% 99.9020880% 99.8877567% 99.9999918% 99.9986494% 99.9987009% 100% 99.9986779% 100% 99.9986788% 99.9807285% 99.9880271% 

 


